

TECHNISCHES BÜRO FÜR CHEMIE - DR. KARL DOBIANER

Projektbericht Nr. 2012-08-06a5

Wien, 2015-04-28

Endbericht Toxikologische Bewertung von Emissionen Containern der Fa. Wegscheider im Rahmen des Projektes BIGCONAIR

Auftraggeber:

Univ. Prof. Dr. Michael Flach Arbeitsbereich Holzbau - Institut für Konstruktion und Materialwissenschaften Universität Innsbruck - Fakultät für Technische Wissenschaften Technikerstrasse 13 A - 6020 Innsbruck

Aufgabenstellung:

Toxikologische Risikobewertung von VOC in verschiedenen Containern im Rahmen des Projektes BIGCONAIR

Ersteller:

Dr. Karl Dobianer Kalvarienberggasse 71/22 A-1170 Wien

Signaturwert	tUh2bj#f8Mp2+X/YY3a4Taa/Q3HyIFvAGB6hBaaLCIEe7wBone7Uk4ckxa+Z5Z6k8QvQvHHVe 3VW+FtnpoBJQQ==					
	Unterzeichner	Mag.Dr. Karl Dobianer				
STURINFORM PRINTED	Aussteller-Zertifikat	CN=a-sign-Premium-Sig-02,0U=a-sign-Premium-Sig-02, O=A-Trust Ges. f. Sicherheitssysteme im elektr. Datenverkehr GmbH,C=AT				
	Serien-Nr.	1133442				
	Methode	urn:pdfsigfilter:bka.gv.at:binaer:v1.1.0				
	Parameter	ersi moc-1,1;ecdsa-sha256@1dda620				
Prüfinformation	Signaturpruefung unter: http://www.signaturpruefung.gv.at					
Hinweis	Dieses mit einer qualifizierten elektronischen Signatur versehene Dokument ist gemäß § 4 Abs. 1 Signaturgesetz einem handschrifflich unterschriebenen Dokument grundsätzlich rechtlich gleichgestellt.					
Datum/Zeit-UTC	2015-04-28T12:50:40					

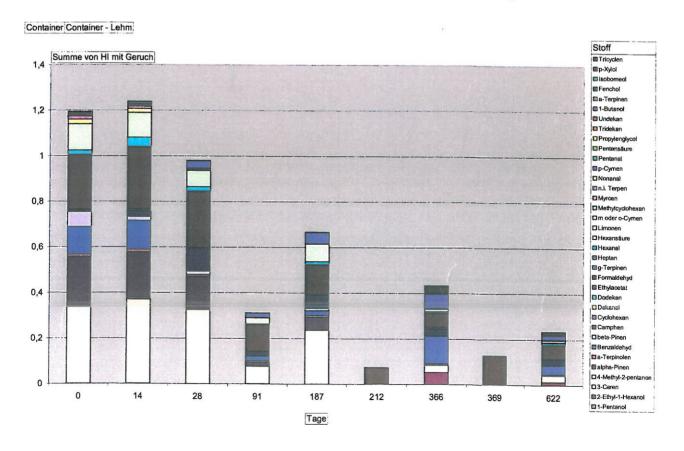
Hinweis: Die auszugsweise Verwendung oder teilweise Vervielfältigung des gegenständlichen Berichtes erfordert die schriftliche Zustimmung des Technischen Büros für Chemie - Dr. Karl Dobianer.

www.dobianer.com

+43-(0)1-942 39 82 Mobil: +43-(0)650-362 42 63 Email: office@dobianer.com

Adresse: A-1170, Kalvarienberggasse 71/22

1. AUSGANGSSITUATION


Im Rahmen des Projektes BIGCONAIR wurden verschiedene Container hergestellt und über mehrere Monate der Verlauf der Emissionen erfasst. Dabei kamen verschiedene Materialien zum Einsatz.

2. AUFGABENSTELLUNG

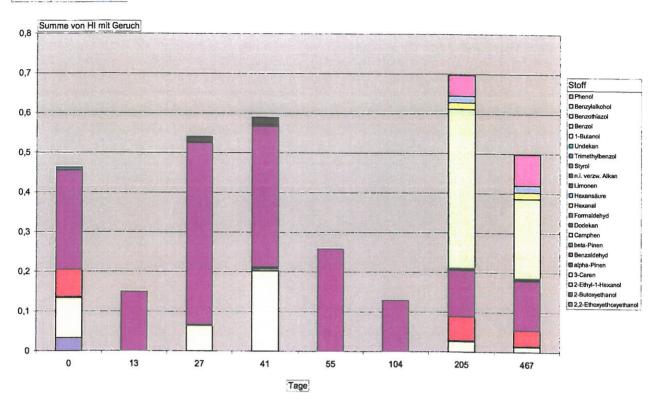
Das Technische Büro für Chemie - Dr. Karl Dobianer wurde beauftragt, den Zeitverlauf der Emissionen zu untersuchen und toxikologisch zu bewerten, wobei als Grundlage jene Bewertungsmethode dienen sollte, welche bereits in einem früheren Projekt zusammen mit der Holzforschung Austria entwickelt wurde.

3. ERGEBNISSE

In der Umgebungsluft konnten lediglich die Stoffe alpha-Pinen, Dekanal und Nonanal nachgewiesen werden. Der maximale Beitrag dieser Stoffe zum gesundheitlichen Gesamt-Risiko entsprach einem Hazard Index (näheres siehe unten) von ca. HI=0,009. Der Beitrag der Umgebungsluft wurde daher nicht berücksichtigt. In der nachfolgenden Abbildung sind die Ergebnisse für den zeitlichen Verlauf des HI im Lehm-Container zusammengefasst.

In der nachfolgenden Tabelle finden sich die zur Grafik gehörigen Daten. Zum leichteren Auffinden der Hauptbeiträge zum Gesamt Hazard Index wurden die Daten wie folgt formatiert:

HI 0,1 bis 1: gelbHI 1 bis 1,5: orange


 \rightarrow HI > 1,5: rot

Datum der Messung	27.03.13	10.04.13	24.04.13	26.06.13	30.09.13	28.03.14	09.12.14	25.10.13	31.03.14
Stoff/Tage	0	14	28	91	187	366	622	212	369
1-Pentanol	0,001	0,001	0,000	0,000	0,000	0,000	0,000		
2-Ethyl-1-Hexanol			W0223			0,053	0,013		
3-Caren	0,336	0,370	0,325	0,077	0,236	0,030	0,028		
4-Methyl-2-pentanon	0,000	0,005	0,000	0,001	0,001				
alpha-Pinen	0,221	0,201	0,148	0,018	0,057	0,008	0,003		
a-Terpinolen	0,009	0,011	0,008	0,006	0,008	0,001	0,004		
Benzaldehyd	0,122	0,127	0,000	0,020	0,020	0,120	0,040		
beta-Pinen	0,063	0,016	0,013	0,002	0,009	0,002	0,001		
Camphen	0,008	0,027	0,104	0,019	0,061	0,029	0,023		
Cyclohexan	0,000	0,001	0,000	0,000	0,000				
Dekanal	0,004	0,005	0,000	0,000	0,000	0,002	0,001		
Dodekan	0,003	0,001	0,000	0,000	0,000	0,001	0,000		
Ethylacetat						0,006	0,001		
Formaldehyd	0,238	0,271	0,246	0,117	0,129	0,062	0,063	0,073	0,129
g-Terpinen	0,003	0,004	0,005	0,002	0,004	0,002	0,001	- 7,0,0	0,123
Heptan	0,000	0,000	0,000	0,000	0,000				
Hexanal	0,018	0,039	0,018	0,001	0,013	0,004	0,008		
Hexansäure						0,001	0,002		
Limonen	0,116	0,109	0,071	0,027	0,076	0,009	0,009		
m oder o-Cymen	0,020	0,017	0,003	0,001	0,000	0,001	0,001		
Methylcyclohexan	0,000	0,000	0,000	0,000	0,000				
Myrcen	0,014	0,011	0,005	0,000	0,000	0,001	0,001		
n.i. Terpen	0,005	0,006	0,004	0,001	0,003	0,001	0,001		
Nonanal	0,006	0,005	0,000	0,000	0,000	0,001	0,001		
p-Cymen	0,003	0,003	0,030	0,017	0,045	0,063	0,016		
Pentanal	0,002	0,006	0,003	0,000	0,003	0,001	0,001		
Pentansäure						0,001	0,001		
Propylenglycol	0,003	0,000	0,000	0,001	0,001				
Tridekan	0,001	0,001	0,000	0,000	0,000	0,002	0,001		
Undekan						0,001	0,000		
1-Butanol						0,001	0,001		
a-Terpinen						0,001	0,001		
Fenchol						0,001	0,001		
Isoborneol						0,001	0,001		
p-Xylol						0,027	0,009		
Tricyclen						0,003	0,001		
Summe	1,195	1,239	0,981	0,312	0,667	0,434	0,234	0,073	0,129

In der nachfolgenden Abbildung und der Tabelle sind die Ergebnisse für den zeitlichen Verlauf des HI im Nachrüst-Container zusammengefasst.

Datum der Messung	28.08.13	10.09.13	24.09.13	08.10.13	21.03.14	08.12.14	22.10.13	10.12.13
Stoff/Tage	0	13	27	41	205	467	55	104
2,2-Ethoxyethoxyethanol	0,032		0,000	0,000				
2-Butoxyethanol	0,000		0,000	0,000				
2-Ethyl-1-Hexanol	0,102		0,064	0,203	0,027	0,013		
3-Caren	0,001		0,001	0,003	0,001	0,001		
alpha-Pinen	0,002		0,002	0,005	0,001	0,001		
Benzaldehyd	0,069		0,000	0,000	0,060	0,040		
beta-Pinen	0,000		0,000	0,002				
Camphen	0,000	100000000000000000000000000000000000000	0,000	0,000				
Dodekan					0,001	0,000		
Formaldehyd	0,250	0,150	0,458	0,354	0,117	0,125	0,258	0,129
Hexanal					0,001	0,001		0,1223
Hexansäure					0,001	0,001		
Limonen	0,001		0,001	0,004	0,001	0,001		
n.i. verzw. Alkan	0,000		0,013	0,018	0,000	0,000		
Styrol	0,005		0,000	0,000				
Trimethylbenzol	0,001		0,000	0,000	0,001	0,001		
Undekan	0,000		0,001	0,001	0,000	0,000		
1-Butanol					0,001	0,002		
Benzol					0,400	0,200		
Benzothiazol					0,017	0,017		
Benzylalkohol					0,017	0,017		71.50
Phenol					0,053	0,079		
Summe	0,464	0,150	0,541	0,590	0,697	0,499	0,258	0,129

4. BEWERTUNG

4.1 Allgemeine toxikologische Effekte von VOC

VOC (volatile organic compounds) sind flüchtige organische Verbindungen, synthetischer oder natürlicher Natur. Die Leitsymptome von VOC sind unspezifisch. In steigender Konzentration verursachen VOC: Reizerscheinungen der Atemwege und der Augen, unspezifische Kopfschmerzen, Müdigkeit und psychische Störungen. Speziell substanzspezifisch sind ggf. Allergien, Asthma und Krebs bei Langzeitbelastung.

4.2 Bewertungsmethode

Basis des Bewertungsmodells ist die für jeden einzelnen Stoff definierte Größe TIAC ("tolerable indoor air concentration"), das ist jene Konzentration, die ein Leben lang ohne Gefährdung der Gesundheit und des Wohlbefindens auch von empfindlichen Menschen ertragen werden kann. Der sog. Hazard Index ergibt sich durch Division der jeweils gemessenen Raumluftkonzentration eines Stoffes durch die TIAC dieses Stoffes. Für die Bewertung eines Zeitpunktes werden die HI aufsummiert. Bei einem Gesamt Hazard Index von kleiner oder gleich I (also gerundet bis 1,5) kann davon ausgegangen werden, dass die gesundheitlichen Belastungen bzw. das toxikologische Risiko für eine Durchschnittsbevölkerung verschwindend klein bis nicht nachweisbar sind. Selbstverständlich kann nie ausgeschlossen werden, dass im Einzelfall bei extrem empfindlichen Personen auch unterhalb dieses Wertes Effekte auftreten können. Über diesem Wert beginnt das Risiko jedenfalls nach und nach signifikant zu steigen. Speziell bei VOC bedeutet dies, dass sich beginnend mit einer Erhöhung der Frequenz des Augenzwinkerns (was üblicherweise noch nicht bewusst als störend empfunden wird), nach und nach zunehmende Reizerscheinungen einstellen werden, bis diese bewusst als unangenehm empfunden werden. Bei weiter steigenden Dosen können sich dann Symptome wie Kopfschmerzen, Übelkeit, Müdigkeit etc. einstellen.

4.3 Bewertung

In der Grafik bzw. der Tabelle ist deutlich zu sehen, dass der HI von Beginn der Messungen an für beide Container einen praktisch unbedenklichen Wert aufweist. Beim Lehm-Container tragen vor allem holzspezifische Stoffe wie Terpene und Formaldehyd zum Gesamt HI bei. Beim Nachrüst-Container sind es 2-Ethyl-1-Hexanol und Formaldehyd. Am Beitrag dieser Stoffe ändert sich auch wenig im Verlauf der Zeit. Bemerkenswert ist, dass beim Nachrüst-Container die Konzentrationen gegen Ende der Messungen hin ansteigen. Ebenso bemerkenswert ist, dass bei den späteren Messungen plötzlich Stoffe auftauchen, welche vorher nicht detektiert werden konnten. Beim Lehm-Container sind dies ab Tag 366 vor allem verschiedenen Holzinhaltsstoffe, beim Nachrüst-Container tragen ab Tag 205 verschiedene Aromaten (so auch das krebserregende Benzol) beträchtlich zum Hazard Index bei. Die Gründe dafür können vielfältig sein, Kontaminationen von außen sind nicht ausgeschlossen.

Dessen ungeachtet ist ab Beginn der Messungen davon auszugehen, dass in diesen Containern keine gesundheitlich relevante Gefährdung von den Emissionen ausgeht, sofern sich die Emissionen nicht mehr wesentlich verändern.

Dr. Karl Dobianer digital sicher signiert

gemäß österreichischem Signaturgesetz